Infiltration vs. Surface Water Discharge: Guidance for Stormwater Managers: Phase 1

Stormwater managers who seek to protect surface and ground waters from the effects of polluted urban runoff will better achieve their goals by selecting the correct options. It is also important that managers understand the appropriate applications and restrictions of the different methods available for use.

Several factors contribute to a decision to infiltrate stormwater and/or route it to surface waters. Those factors include local conditions, policies, opportunities, constraints, and regulatory requirements. Stormwater managers face many potentially conflicting objectives, from flood prevention to protection of downstream habitat. New management plans, which attempt to address goals of water quality and water quantity control, incorporate both infiltration and surface treatment/discharge methods.

Stormwater Infiltration

The desire to incorporate infiltration raises two potential concerns: acceptance of small-scale infiltration devices, especially by regulatory authorities, and the potential for groundwater contamination. The researchers surveyed stormwater managers to determine their interest in and ability to approve infiltration as a stormwater management technique. Although all the states and regional respondents supported the installation of infiltration devices, only two-thirds of the local governments indicated they would approve infiltration. The report addresses limitations to the use of infiltration.

The second concern is that the potential for groundwater contamination from stormwater infiltration is not well known or documented. Advocates of infiltration often have not addressed pollutant removal in the subsurface. A modeling exercise evaluated whether vadose zone natural soils found below infiltration basins could be expected to remove three representative stormwater pollutants effectively—zinc, sodium, and chloride. Models predicted the depth of migration of these pollutants in the subsurface to determine which factors influenced migration. Rainfall was the common driver of pollutant depth in the model. Concentration affected the zinc migration, whereas intrinsic permeability affected the pollutant depth for sodium and chloride. In addition, the modeling exercise identified data gaps that need to be addressed before more accurate modeling could occur.

BMP Review

Infiltration devices allow water to penetrate the surface soil, moving it through the unsaturated zone to the groundwater. During this movement, pollutants may be transported with the water or may be retarded through physiochemical interactions with the soil matrix. The stormwater manager must develop an overall strategy for selecting the most appropriate BMP for existing or projected watershed conditions.

The research team discussed infiltration as a stormwater management prac-
tice and analyzed the design and performance of infiltration BMPs. The researchers determined that the selection of an appropriate BMP or combination of BMPs depends on four considerations: 1) local site hydrology, e.g., amount of runoff to be treated, frequency of runoff; 2) expected pollutant loading from the drainage area; 3) local installation conditions, e.g., surface treatment vs. infiltration; availability of suitable locations; and 4) regulatory requirements.

Data Gaps in Stormwater Infiltration

The researchers identified questions and data gaps in the selection and use of stormwater treatment devices.

Pollutants of concern

Microbial and other pollutants must be accounted for when selecting and managing a stormwater infiltration practice. The relationship between wet weather flows and higher concentrations of these microorganisms infers a relationship between urban stormwater runoff and microbiological quality.

Effects of pollutants

Data gaps exist for both the effect of stormwater quality on stream integrity as well as stream restoration. Further research is needed on the ability of BMPs or low impact development techniques to improve the quality of a receiving water.

Design of infiltration facilities

To date, no model can accurately predict pollutant migration depth. Future research should use site-specific information to compare observed and model predicted organic movement in the subsurface. Installed BMPs should be monitored for better prediction of performance.

![Groundwater Contamination Potential for Stormwater Pollutants](chart)

<table>
<thead>
<tr>
<th>Compound Class</th>
<th>Compounds</th>
<th>Mobility (worst case: sandy/low organic soils)</th>
<th>Abundance in stormwater</th>
<th>Fraction filterable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrients</td>
<td>nitrates</td>
<td>mobile</td>
<td>low/moderate</td>
<td>high</td>
</tr>
<tr>
<td>Pesticides</td>
<td>2,4-D</td>
<td>mobile</td>
<td>low</td>
<td>likely low</td>
</tr>
<tr>
<td></td>
<td>f-BHC (indane)</td>
<td>intermediate</td>
<td>moderate</td>
<td>likely low</td>
</tr>
<tr>
<td></td>
<td>malathion</td>
<td>mobile</td>
<td>low</td>
<td>likely low</td>
</tr>
<tr>
<td></td>
<td>atrazine</td>
<td>mobile</td>
<td>low</td>
<td>likely low</td>
</tr>
<tr>
<td></td>
<td>chlordane</td>
<td>intermediate</td>
<td>moderate</td>
<td>very low</td>
</tr>
<tr>
<td></td>
<td>diazinon</td>
<td>mobile</td>
<td>low</td>
<td>likely low</td>
</tr>
<tr>
<td>Other</td>
<td>VOCs</td>
<td>mobile</td>
<td>low</td>
<td>very high</td>
</tr>
<tr>
<td>organics</td>
<td>1,3-dichlorobenzene</td>
<td>low</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>anthracene</td>
<td>intermediate</td>
<td>low</td>
<td>moderate</td>
</tr>
<tr>
<td></td>
<td>benzo[a]anthracene</td>
<td>intermediate</td>
<td>moderate</td>
<td>very low</td>
</tr>
<tr>
<td></td>
<td>bis(2-ethylhexyl)phthalate</td>
<td>intermediate</td>
<td>moderate</td>
<td>likely low</td>
</tr>
<tr>
<td></td>
<td>butyl benzyl phthalate</td>
<td>low</td>
<td>low/moderate</td>
<td>moderate</td>
</tr>
<tr>
<td></td>
<td>fluoranthene</td>
<td>intermediate</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>fluorene</td>
<td>intermediate</td>
<td>low</td>
<td>likely low</td>
</tr>
<tr>
<td></td>
<td>naphthalene</td>
<td>low/intermediate</td>
<td>low</td>
<td>moderate</td>
</tr>
<tr>
<td></td>
<td>pentachlorophenol</td>
<td>intermediate</td>
<td>moderate</td>
<td>likely low</td>
</tr>
<tr>
<td></td>
<td>phenanthrene</td>
<td>intermediate</td>
<td>moderate</td>
<td>very low</td>
</tr>
<tr>
<td></td>
<td>pyrene</td>
<td>intermediate</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Pathogens</td>
<td>enteroviruses</td>
<td>mobile</td>
<td>likely present</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>Shigella</td>
<td>low/intermediate</td>
<td>likely present</td>
<td>moderate</td>
</tr>
<tr>
<td></td>
<td>P. aeruginosa</td>
<td>low/intermediate</td>
<td>very high</td>
<td>moderate</td>
</tr>
<tr>
<td></td>
<td>protozoa</td>
<td>low/intermediate</td>
<td>likely present</td>
<td>moderate</td>
</tr>
<tr>
<td>Heavy metals</td>
<td>nickel</td>
<td>low</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>cadmium</td>
<td>low</td>
<td>low</td>
<td>moderate</td>
</tr>
<tr>
<td></td>
<td>chromium</td>
<td>intermediate/very low</td>
<td>moderate</td>
<td>very low</td>
</tr>
<tr>
<td></td>
<td>lead</td>
<td>very low</td>
<td>moderate</td>
<td>very low</td>
</tr>
<tr>
<td></td>
<td>zinc</td>
<td>low/very low</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Salts</td>
<td>chloride</td>
<td>mobile</td>
<td>seasonal high</td>
<td>high</td>
</tr>
</tbody>
</table>

The research on which this report is based was funded in part by the U.S. Environmental Protection Agency (U.S. EPA) through Cooperative Agreement No. CR-827345-01 with the Water Environment Research Foundation (WERF). Unless an U.S. EPA logo appears on the cover, this report is a publication of WERF; not U.S. EPA. Funds awarded under the agreement cited above were not used for editorial services, reproduction, printing, or distribution.

CONTRACTOR

Shirley E. Clark, Ph.D., PE.
Katherine H. Baker, Ph.D.
Pennsylvania State University, Harrisburg

PROJECT TEAM

Catherine S. Burkhart
Julia M. Hafera
Krishna N. Mandavia
J. Bradley Mikula
Pennsylvania State University, Harrisburg

Melinda M. Laior, Ph.D.
Envirosource, Inc.

PROJECT SUBCOMMITTEE

Gail Boyd
URS Corporation

Earl Shaver
Auckland Regional Council, New Zealand

George Tchobanogous, Ph.D.
Tchobanogous Consulting

Christine Andersen, PE.
City of Long Beach, California

Eric Livingston
Florida Department of Environmental Protection

John Vecchioli, PG.
United States Geological Survey

05/08